7.5. 接口值

概念上講一個接口的值,接口值,由兩個部分組成,一個具體的類型和那個類型的值。它們被稱為接口的動態類型和動態值。對於像Go語言這種靜態類型的語言,類型是編譯期的概念;因此一個類型不是一個值。在我們的概念模型中,一些提供每個類型信息的值被稱為類型描述符,比如類型的名稱和方法。在一個接口值中,類型部分代表與之相關類型的描述符。

下面4個語句中,變量w得到了3個不同的值。(開始和最後的值是相同的)

var w io.Writer
w = os.Stdout
w = new(bytes.Buffer)
w = nil

讓我們進一步觀察在每一個語句後的w變量的值和動態行為。第一個語句定義了變量w:

var w io.Writer

在Go語言中,變量總是被一個定義明確的值初始化,即使接口類型也不例外。對於一個接口的零值就是它的類型和值的部分都是nil(圖7.1)。

一個接口值基於它的動態類型被描述為空或非空,所以這是一個空的接口值。你可以通過使用w==nil或者w!=nil來判斷接口值是否為空。調用一個空接口值上的任意方法都會產生panic:

w.Write([]byte("hello")) // panic: nil pointer dereference

第二個語句將一個*os.File類型的值賦給變量w:

w = os.Stdout

這個賦值過程調用了一個具體類型到接口類型的隱式轉換,這和顯式的使用io.Writer(os.Stdout)是等價的。這類轉換不管是顯式的還是隱式的,都會刻畫出操作到的類型和值。這個接口值的動態類型被設為*os.File指針的類型描述符,它的動態值持有os.Stdout的拷貝;這是一個代表處理標準輸出的os.File類型變量的指針(圖7.2)。

調用一個包含*os.File類型指針的接口值的Write方法,使得(*os.File).Write方法被調用。這個調用輸出“hello”。

w.Write([]byte("hello")) // "hello"

通常在編譯期,我們不知道接口值的動態類型是什麼,所以一個接口上的調用必須使用動態分配。因為不是直接進行調用,所以編譯器必須把代碼生成在類型描述符的方法Write上,然後間接調用那個地址。這個調用的接收者是一個接口動態值的拷貝,os.Stdout。效果和下面這個直接調用一樣:

os.Stdout.Write([]byte("hello")) // "hello"

第三個語句給接口值賦了一個*bytes.Buffer類型的值

w = new(bytes.Buffer)

現在動態類型是*bytes.Buffer並且動態值是一個指向新分配的緩衝區的指針(圖7.3)。

Write方法的調用也使用了和之前一樣的機制:

w.Write([]byte("hello")) // writes "hello" to the bytes.Buffers

這次類型描述符是*bytes.Buffer,所以調用了(*bytes.Buffer).Write方法,並且接收者是該緩衝區的地址。這個調用把字符串“hello”添加到緩衝區中。

最後,第四個語句將nil賦給了接口值:

w = nil

這個重置將它所有的部分都設為nil值,把變量w恢復到和它之前定義時相同的狀態,在圖7.1中可以看到。

一個接口值可以持有任意大的動態值。例如,表示時間實例的time.Time類型,這個類型有幾個對外不公開的字段。我們從它上面創建一個接口值:

var x interface{} = time.Now()

結果可能和圖7.4相似。從概念上講,不論接口值多大,動態值總是可以容下它。(這只是一個概念上的模型;具體的實現可能會非常不同)

接口值可以使用==和!=來進行比較。兩個接口值相等僅當它們都是nil值,或者它們的動態類型相同並且動態值也根據這個動態類型的==操作相等。因為接口值是可比較的,所以它們可以用在map的鍵或者作為switch語句的操作數。

然而,如果兩個接口值的動態類型相同,但是這個動態類型是不可比較的(比如切片),將它們進行比較就會失敗並且panic:

var x interface{} = []int{1, 2, 3}
fmt.Println(x == x) // panic: comparing uncomparable type []int

考慮到這點,接口類型是非常與眾不同的。其它類型要麼是安全的可比較類型(如基本類型和指針)要麼是完全不可比較的類型(如切片,映射類型,和函數),但是在比較接口值或者包含了接口值的聚合類型時,我們必須要意識到潛在的panic。同樣的風險也存在於使用接口作為map的鍵或者switch的操作數。只能比較你非常確定它們的動態值是可比較類型的接口值。

當我們處理錯誤或者調試的過程中,得知接口值的動態類型是非常有幫助的。所以我們使用fmt包的%T動作:

var w io.Writer
fmt.Printf("%T\n", w) // "<nil>"
w = os.Stdout
fmt.Printf("%T\n", w) // "*os.File"
w = new(bytes.Buffer)
fmt.Printf("%T\n", w) // "*bytes.Buffer"

在fmt包內部,使用反射來獲取接口動態類型的名稱。我們會在第12章中學到反射相關的知識。

7.5.1. 警告:一個包含nil指針的接口不是nil接口

一個不包含任何值的nil接口值和一個剛好包含nil指針的接口值是不同的。這個細微區別產生了一個容易絆倒每個Go程序員的陷阱。

思考下面的程序。當debug變量設置為true時,main函數會將f函數的輸出收集到一個bytes.Buffer類型中。

const debug = true

func main() {
    var buf *bytes.Buffer
    if debug {
        buf = new(bytes.Buffer) // enable collection of output
    }
    f(buf) // NOTE: subtly incorrect!
    if debug {
        // ...use buf...
    }
}

// If out is non-nil, output will be written to it.
func f(out io.Writer) {
    // ...do something...
    if out != nil {
        out.Write([]byte("done!\n"))
    }
}

我們可能會預計當把變量debug設置為false時可以禁止對輸出的收集,但是實際上在out.Write方法調用時程序發生了panic:

if out != nil {
    out.Write([]byte("done!\n")) // panic: nil pointer dereference
}

當main函數調用函數f時,它給f函數的out參數賦了一個*bytes.Buffer的空指針,所以out的動態值是nil。然而,它的動態類型是*bytes.Buffer,意思就是out變量是一個包含空指針值的非空接口(如圖7.5),所以防禦性檢查out!=nil的結果依然是true。

動態分配機制依然決定(*bytes.Buffer).Write的方法會被調用,但是這次的接收者的值是nil。對於一些如*os.File的類型,nil是一個有效的接收者(§6.2.1),但是*bytes.Buffer類型不在這些種類中。這個方法會被調用,但是當它嘗試去獲取緩衝區時會發生panic。

問題在於儘管一個nil的*bytes.Buffer指針有實現這個接口的方法,它也不滿足這個接口具體的行為上的要求。特別是這個調用違反了(*bytes.Buffer).Write方法的接收者非空的隱含先覺條件,所以將nil指針賦給這個接口是錯誤的。解決方案就是將main函數中的變量buf的類型改為io.Writer,因此可以避免一開始就將一個不完整的值賦值給這個接口:

var buf io.Writer
if debug {
    buf = new(bytes.Buffer) // enable collection of output
}
f(buf) // OK

現在我們已經把接口值的技巧都講完了,讓我們來看更多的一些在Go標準庫中的重要接口類型。在下面的三章中,我們會看到接口類型是怎樣用在排序,web服務,錯誤處理中的。